

SHIPMA

SHIP-MAnoeuvring Numerical Model

(the soul of SHIPMA)

Engineering, Resources & Development, S.L.

SHIPMA - Index

Intro

What is SHIPMA?

For what is SHIPMA?

Working with SHIPMA

Challenges

Improvements

What is SHIPMA?

SHIP MAnoeuvring

Numerical Model

DI

RE

Deterministic

To simulate the manoeuvring behaviour of vessels in ports and fairways.

The application of SHIPMA is primarily in port and fairway design, referring to both approach channels and inland waterways. FEASIBILITY of Manoeuvers.

Fast-Time Simulation

Fast-Track Simulation

Autopilot Model

How does SHIPMA work?

Flowchart: mathematical manoeuvring model

Flowchart: mathematical manoeuvring model

Flowchart: mathematical manoeuvring model

M ShipMa protected Z:\Proyectos\ENR18_012_Sur_Oman\Trabajo\SHIPMA\SurOman.sma /Shipma Projects/SurOman/Manoeuvres/Sur_11241/Description

File Edit Tools Help

.	? 🔗							
📗 Shipma Projects								
🗄 🚽 📗 SurOman		Manoeuvre	e sections					
🕀 퉲 Ships					100 00 100 00 00 00 00 00 00 00 00 00 00		200000	
🗄 🍌 Scenerie	es	>⊞ _	Start [m]	Offset [deg]	Revs [rpm]	V [kts]	Pilot	Tug scenario
🕀 🎍 Environment			0.0	0.0	30.0	0.0	Auto_01	Tug_01
😑 🔐 Pilots		m	500.0	0.0	18.0	0.0	Auto_01	Tug_01
Auto_01			2000.0	0.0	18.0	0.0	Auto_01	none
Auto_02			4150.0	0.0	-30.0	0.0	Auto_01	Tug_01
Auto_03			5130.0	-90.0	0.0	0.0	Auto_03	Tug_01
Tug 01		_	5241.0	-180.0	18.0	0.0	Auto_03	Tug_01
Manoeuvres			5242.8	-180.0	-18.0	0.0	Auto_03	Tug_01
□		_	5248.0	-180.0	18.0	0.0	Auto_03	Tug_01
	Track		5254.0	-180.0	0.0	0.0	Auto_03	Tug_01
•	Description	_	5255.0	-180.0	-18.0	0.0	Auto_03	Tug_01
🗄 🕌 Sur_	_11351	1	5258.0	-180.0	18.0	0.0	Auto_03	Tug_01
🕀 📕 Sur	_11151		5262.0	-180.0	0.0	0.0	Auto_03	Tug_01
	_11152	_	5264.7	-180.0	-18.0	0.0	Auto 03	Tug 01
H- Sur	_11242		5300.0	-180.0	-18.0	0.0	Auto 01	Tug 01
the sur	_11352		6300.0	-180.0	0.0	0.0	Auto 01	Tug 01
the sur	_111518	10 m	0000.0	100.0	0.0	0.0	A010_01	109_01
ter Sur	_11152D							
	11251							
i 👘 👘 Sur	_11232							

Desired track Desired velocity or rpm Desired course offset

... ARE NOT...

• "a priori" inputs (one exception)

... ARE ...

• Parameters for optimization

REQUIRE ...
Interactive process to find the "best" manoeuvre

Track Optimization - One exception

Engineering, Resources & Development, S.L.

R

- Upgrading of Nautical Channels
- Constant speed navigation
- No manoeuvring areas (stop, turning)
- No berthing/unberthing (no approach)
- Testing new bends layout with crossing waves, winds and currents
- Feasibilty study
- Manoeuvers consisting in:
 - Constant setting order
 - Imposed track
 - Power burst (if required)
 - No tug assitance (escort)
- Comparing weather conditions to set operational limits

For what is SHIPMA?

SHIP MAnoeuvring studies

Engineering, Resources & Development, S.L.

SHIP MAnoeuvring studies

SHIPMA

- A tool to evaluate cases/alternatives using simulation of ship manoeuvres
- Entrance and exit of ports, passage of bridges, passage of channels, entrance of locks, offshore operations

Purpose of SHIPMA

- To evaluate the feasibility of manoeuvres under specific environmental conditions;
- Determine the consequences for the dimensions of infrastructure;
- Determine the consequences for the vessel's equipment (e.g. thrusters) or assistance (e.g. tugs).

Engineering, Resources & Development, S.L.

SHIP MAnoeuvring studies

- First stages of the Project
- Conceptual Design
- Selection of Alternatives
- Basic Design (Pre-FEED // FEED)
- Previous design checking
- Feasibility studies
- Advanced Design
- Layout/Dredging optimization
- Human factor consideration for operational stage

But NOT always

SHIP MAnoeuvring studies

Engineering, Resources & Development, S.L.

Fast-Time vs Real-Time

Deterministic vs Probabilistic

Ship Feasibility vs Human Safety

SHIPMA versus simulator

Advantages:

- All physics incorporated
- Runs can be reproduced and are comparable
- Fast

Disadvantages:

- No human element
- No multi ship situations

Operator is only one person, learning and listening from the others

Engineering, Resources & Development, S.L.

Only Civil Engineering

- Justification: only channel design, just tugs exercise, ...
- Is it realistic?
- Initial conditions (departure) determine the success of the manoeuver
- Is this manoeuver similar to the future real-life operations?

Engineering, Resources & Development, S.L.

Only Ship Behaviour

- Do you understand the Project?
- Focus "only" in ship characteristics
- What's about other restrictions:
 - port infraestructura, AtoN
 - Dredging
 - Harbour rules
 - environmental issues?
- What's about pilot strategies, towing issues,...?
- What's about safety margins?

EXAMPLE: Sailing at 4 knots against another vessel. SHIPMA performs the simulation, stops and turns before Collision (even at enough distance) but... what can a pilot think about risky situation?

ALSO: 2D perspective is different than 3D. So safety "feeling" is so different

 $Y = Y_{uv}.V_{s}^{2}.\cos\beta.\sin\beta + Y_{v|v|}.V_{s}^{2}.\sin\beta|\sin\beta|$ = Y_{uv}.uv + Y_{v|v|}.v|v| N = N_{uv}.uv + N_{v|v|}.v|v| X = Y_{v|v|}.v².

Engineering, Resources & Development, S.L.

Only Nautical

- No experience in:
 - Modelling
 - Analysis
 - Objective comparison
 - Understanding of the project

SHIPMA Future Challenges

Nowadays, in the Middle East, a typical ToR (Terms of Reference) for a tender has the following reference:

The Desktop Navigation Study shall be undertaken adopting two-dimensional real time navigation software. For clarity, fast-time navigation software will not be accepted, and technical proposals which make use of fast-time navigation software will be disqualified.

Why?

Possible answers:

- Competence has no Auto-pilot models. High influence in the area
- Nautical sector (Pilots, Captains) doesn't understand well the software (very engineering)
- No nautical aspects are considered in many studies (better practices)
- Lower prices of Real-Time simulation (Desktop simulators, 2D, ...)

SHIPMA Future Improvements

Possible suggestions:

- Collision module (improve unberthing operations
- Independent propellers/rudders
- Post-processing (more friendly and flexible; combining different tracks)
- More flexibility for usability of ship models (SCAMCO?)

Engineering, Resources & Development, S.L. NIF: B 86772407 c/Bolonia, $5-9^{\circ}2$ 28028 - Madrid (SPAIN)

Tlfs: Tlfs: +34 91 879 98 70 - +34 692 78 74 70

E-mail: gonzalo@enredsl.com itrejo@enredsl.com

Web: www.enredsl.com

LinkedIn: http://www.linkedin.com/company/engineering-resources-&-development-s-l-

